
UDC 539.3 : 534.1 

PMPAGATION OF BENDING-TORSIMAL WAVES IN THIN-WALLED BEAMS 

OF OPEN CROSS SECTION 

PMM Vol.41, N: 2, 1977, pp. 372-375 

V. B, ~~~CHE~AKOV 
(Moscow) 

(Received June 7, 1976) 

Dispersion equations of the phase and group velocities of the bending-to~lonal 
waves in thin-walled, open section beams, with the deformations due to shear 

taken into account, are given. It is shown that in the general case six modes of 

propagation of the bending-torsional waves exist, A numerical problem is con- 
sidered for a channel section beam. The limiting frequencies are discussed, 

which divide the whole frequency range into regions with different numbers of 

possible modes of wave propagation. 

A system of equations describing the bending-to~ional ~cilla~o~ of ~~-walled , 
open section beams was obtained earlier in cl], and for the channel and I-section beams 

in [2]. However, in [l] the shear deformations which arise in bending-torsion were not 
taken into account. The equations in [23 were derived by approximate methods and this 
led to violation of symmetry in the matrix of the geometrical characteristics (the mat- 

rix S). 
Using the analytic method developed in (33, we co~~cted in [4, 53 a general theory 

of equilibrium of motion of thin-walled, open profile beams, with the shear deformation 

taken into account. In the absence of external loads, the equations of bending-torsional 
motion can be written in the following matrix form [5]: 

B = diag (El,, Ef,, EI,), B, = diag (0, 0, GId 

1 O-a, &II, S,,II, s,bA 

AZ= 0 1 ay , S i= s,& &tf, ssd’1, 

-a, av r‘J &#, ~,iho s,,l~, 

Here E and G are the moduh of elasticity, p is the material density, .F is the area 

of transverse cross section, B and B, are the rigidity matrices, I, and I, arethemo- 

ments of inertia relative to the principal axes, I, is the principal sectorial moment of 

inertia, Id is the torsional moment of inertia, 8 Is the general displacement vector the 

components of which are the angles of rotation of the transverse cross sectionsrelativeto 

the principal axes (6,, 6,) and to the warping of the cross sections 6,, A and S are 
the matrices of geometrical characteristics, while a, and ay are the coordinates of the 

principal sectorial pole in the cross section, r is the polar radius of inertia of thecross 

section and Sij denote the geometrical characterisitics used to account for the effects 
of the shear deformation [3, 41. In (1) primes denote differentiation with respect to the 
longitudinal coordinatez, and dots denote the differentiation with respect to time t. We 
note that the matrix S in Cl] does not contain the elements S_, s,,, s,, , whilein 
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[Z] the condition of symmetry boo, = S__ and SW?, = S,, is violated. 
The displacements &, Ey of the beam axis and the angles of rotation of the cross 

sections E, about this axis, together form a vector ‘t which is connected with the vector 

6 by the following matrix equation: 
.?l E 
j -= - fk - - G s @“-+.. 

i i (3 

If we neglect the shear deformations, the system (1) and (2) yields the equations which 
correspond to the Vlasov theory [6]. 

Let us turn our attention to the problem of velocities of propagation of the bending- 
torsional wavesin a thin-walled beam. We shall seek the solutions of the system (1) in 
the form 

~(~,t)=IIA~exp(i[(vz+~t)+~jl}ll, i=xys@ 

where Ajl aj are constants, v’ is the wave number and $ is the wave frequency. Sub- 
stituting (3) into (l), we arrive at a system of algebraic equations for Ajs To obtain a 

nontrivial solution, we equate the determinant to zero. This yields an equation connec- 
ting the wave number with the frequency 

det 
[ 

Bve + Brvs- pFA$2 - + Bv%$s + + pFAS 
i 

v=+2 - + q+)] = 0 (4) 

The phase velocities c and group velocities cg of the waves are found from the relations 

c=+)/v, cg = d$ / dv (5) 

The twelfth order equation (~4) and relations (5) together yield six nonnegative values 
for the phase and group wave velocities,.depending on the wave number (or on the fre- 
quency). In the general case of an arbitrary open section, the bending-torsional waves 

can propagate through the beam in six different ways. 
We can write Eq. (4) in the form 

det 
[( 

EF 
BK-- c,sA 

) ( 

c$c22 
c4 - Bets+ BKc,s - - *s B, es+ Bc,sc,s 

1 
= 0 (6) 

C1=V/Elp, ca=Jf/Glp* K = - EFB-‘AS 

Let us consider the case in which the principal sectorial pole coincides with the center 
of gravity in the cross section. This occurs e. g. when the beam has two planes of sym- 

metry. All matrices entering Eq. (6) become diagonal, and the equation itself splits into 
three independent equations. Consider one of these equations referring to the torsional 

waves 

Here k,, is the coefficient related to the form of the cross section under the bending 
torsion. Assuming that the coefficient accompanying ~4 is zero, we obtain the value of 
the limiting frequency 

When Q = I& , Eq. (7) yields a single value for the phase velocity, when $ > $*, an- 
other value appears and we have two modes of propagation of the torsional wave.s.When 
+ < $*, , the second root of (7) is imaginary, hence no waves of the second type are 
transmitted. 
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The limiting frequency &,,, defined by (8) can be given the following physical ex- 
planation. The quantity ca represents the velocity of propagation of the shear wave and 
the quantity R, can be called the reduced radius of inertia of the cross section. Then 
the quantity &, is inversely proportional to time in which the shear wave transverses 
a distance equal to the reduced radius of inertia of the cross section. 

o-*- 
R . I 1.5 !P 
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Similar results can be obtained for the flexural waves. The values of the limitingfre- 

quencies are obtained from the formulas 

In a beam with an arbitrary open transverse cross section, the values of the limiting 
frequencies can be found from the matrix equation 

det BK-- 
C 

EF 

$2 
d,zA = 0 

I 

As an example, we consider a beam with channel cross section. Figure 1 shows the 

phase velocities (a) and group velocities (b) of the bending and bending-torsionalwaves 

versus frequency ‘P=$l/pI,/EF 

The dashed lines depict the results obtained from the Vlasov theory. The ratio of the 
moduli of elasticity was assumed to be E / G = 2.6 and a numerical algorithm wasused 

on a computer to perform the calculations. 
We can see from the graphs that the limiting values of the frequencies divide the 

whole 0 to 00 frequency range into four regions with different numbers of possible 
modes of wave propagation. In the low frequency region only three modes of wave pro- 
pagation are possible; in the present case these are represented by a bending wave (in 

the plane of symmetry) and two coupled bending-torsional waves. As the frequency in- 
creases, the number of possible modes increases by one on each passage through the li- 
miting frequency to reach six possible modes in the last region. 

The wave group velocities given by (6) do not exceed those of the expansion waves. 
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The propagation velocities of the high frequency waves approach those of the Rayleigh 
surface waves. For the case of the bending waves the result is well known, and is in good 

agreement with the exact solution of the theory of elasticity [7]. 
In the high frequency region the group velocities of the lower wave forms are przcti- 

tally constant. This makes it possible to neglect the wave dispersion when estimating 

the contribution of the higher frequencies to the acceleration appearing within the beam 

under the action of short duration loads [8]. 
It should be noted that the results obtained using the Vlasov theory do not contain ad- 

ditional modes of wave propagation. The velocity values obtained from the lower modes 
are too high and do not match the real process. The group wave velocities exceed,in a 
certain frequency range, the speed of sound in the material. 
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